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Abstract. The spectrum of the neutrinos produced in the massive photon and longitudinal plasmon decay
process has been computed with four levels of approximation for the dispersion relations. Some analytical
formulae in the limit cases are derived. Interesting conclusions related to previous calculations of the energy
loss in stars are presented. The high energy tail of the neutrino spectrum is shown to be proportional to
exp(−E/kT ), where E is the neutrino energy and kT is the temperature of the plasma.
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1 Introduction and motivation

Thermal neutrino losses from a plasma are very import-
ant for stellar astrophysics [1, 2]. Plasmon decay is one
of the three main reactions. Extensive calculations for
these processes were done by the group of Itoh [3–11].
Other influential articles include [12–20]. Meanwhile, our
abilities to detect neutrinos has grown by many orders
of magnitude, beginning with the 1.4 tonne experiment
of Reines and Cowan [21] up to the biggest one exist-
ing now, the 50 kt super-Kamiokande detector [22]. Re-
cently, the “GADZOOKS!” upgrade to Super-Kamiokande
proposed by Beacom and Vagins [23] has attracted at-
tention of both experimental and theoretical physicists.
At least one new source of astrophysical antineutrinos is
guaranteed with this upgrade, namely a diffuse supernova
neutrino background [24–26]. Pre-supernova stars will be
available to observations out to ∼ 2 kps [26]. This tech-
nique is the only one extensible to the megaton scale [26].
Memphys, the Hyper-Kamiokande and UNO (for Mt-scale
water Cherenkov detectors cf. e.g. [27]) proposals now seri-
ously consider to add GdCl3 to the one of the tanks with
typically the three-tank design [28]. Recently, the discus-
sion of geoneutrino detection [29] increased attention to
deep underwater neutrino observatories [30] with a target
mass of 5–10Mt [26] and even larger [31]. It seems that
(anti-) neutrino astronomy is on our doorstep, but numer-
ous astrophysical sources of the ν still are not analyzed
from the detection point of view.
Detection of the solar [32–40] and supernova [41–49]

neutrinos was accompanied and followed by an extensive
set of detailed calculations (see e.g. [50–57] and references
therein as representatives of this broad subject) of the
neutrino spectrum. On the contrary, very little is known
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about spectral neutrino emission from other astrophysi-
cal objects. Usually, some analytical representation of the
spectrum is used, based on earlier experience and numer-
ical simulations; cf. e.g. [58]. While this approach is jus-
tified for supernovae, where neutrinos are trapped, other
astrophysical objects are transparent to neutrinos, and the
spectrum can be computed with arbitrary precision. Our
goal is to compute neutrino spectra as exact as possible
and fill this gap. The plasmaneutrino process dominates
dense, degenerate objects like red giant cores [59], cool-
ing white dwarfs [60], including Ia supernova progenitors
before the so-called “smoldering” phase [61]. Plasmaneu-
trino is important secondary cooling processes in neutron
star crusts [62] and massive stars [63]. Unfortunately, ther-
mal neutrino losses usually are calculated using methods
completely erasing almost any information related to the
neutrino energy Eν and the directionality as well. This in-
formation is not required to compute the total energy Q
radiated as neutrinos per unit volume and time. From the
experimental point of view, however, it is extremely im-
portant if a given amount of energy is radiated as e.g. nu-
merous keV neutrinos or one 10MeV neutrino. In the first
case we are unable to detect (using available techniques)
any transient neutrino source regardless of the total lumi-
nosity and proximity of the object. In the second case we
can detect astrophysical neutrino sources if they are strong
and not too far away using an advanced detector that is big
enough.
A few of the research articles in this area attempt to

estimate the average neutrino energy [16, 17, 65, 66], ad-
ditionally computing the reaction rate R. Strangely, the
authors of these references presented figures and formu-
lae for Q/R instead of 12Q/R. This gives a false picture of
the real situation, as the former expression gives 〈Eν +Eν̄〉.
Obviously, we detect neutrinos , not ν–ν̄ pairs. Values of
1
2Q/R do not give the average neutrino energy, as in gen-
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eral the neutrino and antineutrino spectra are different. As
we will see, only for longitudinal plasmon decay neutrinos
the energies of neutrinos and antineutrinos are equal. How-
ever, the difference in all situations where thermal neutrino
losses are important is numerically small and the formula

〈Eν〉 �
1

2

Q

R
(1)

is still a “working” estimate.
The mean neutrino energy is useful for the purpose of a

qualitative discussion of the detection prospects/methods.
A quantitative discussion requires knowledge of the spec-
trum shape (the differential emissivity dR/dEν). The high
energy tail is particularly important from the point of
view of experimental detection. Detection of the lowest en-
ergy neutrinos is extremely challenging due to numerous
background signal noise sources e.g. 14C decay for Eν <
200 keV [64]. Relevant calculations for the spectrum of the
medium energy neutrinos with 〈Eν〉 ∼ 1MeV emitted from
thermal processes have become available recently [65–67].
The purpose of this article is to develop accurate methods
and discuss various theoretical and practical (important
for detection) aspects of the spectra of neutrinos from as-
trophysical plasma processes. This could help experimen-
tal physicists to discuss a possible realistic approach to
detect astrophysical sources of neutrinos in the future.

2 Plasmaneutrino spectrum

2.1 Properties of plasmons

Emissivity and the spectrum shape from plasmon decay
is strongly affected by the dispersion relation for trans-
verse plasmons (massive in-medium photons) and longitu-
dinal plasmons. In contrast to transverse plasmons, with
the vacuum dispersion relationω(k) = k, longitudinal plas-
mons exist only in the plasma. The dispersion relation by
definition is a function ω(k), where h̄ω is the energy of
the (quasi-) particle and h̄k is the momentum. The issues
related to particular handling of these functions are dis-
cussed clearly in the article of Braaten–Segel [15]. We will
repeat here the most important features of the plasmons.
For both types, the plasmon energy for momentum

k = 0 is equal to ω0. The value ω0 ≡ ω(0) is referred to as
the plasma frequency and can be computed from

ω20 =
4α

π

∞∫

0

p2

E

(
1−
v2

3

)
(f1+f2)dp , (2)

where v = p/E and E =
√
p2+m2e (h̄ = c = 1 units are

used), me � 0.511MeV, and the fine structure constant
is α = 1/137.036 [68]. The functions f1 and f2 are the
Fermi–Dirac distributions for electrons and positrons,
respectively:

f1 =
1

e(E−µ)/kT +1
, f2 =

1

e(E+µ)/kT +1
. (3)

The quantity µ is the chemical potential of the electron
(including the rest mass). Other important parameters in-
clude the first relativistic correction ω1,

ω21 =
4α

π

∞∫

0

p2

E

(
5

3
v2− v4

)
(f1+f2)dp , (4)

the maximum longitudinal plasmon momentum (energy)
kmax,

k2max ≡ ω
2
max =

4α

π

∞∫

0

p2

E

(
1

v
ln
1− v

1+ v
−1

)
(f1+f2)dp ,

(5)

and the asymptotic transverse plasmon massmt,

m2t =
4α

π

∞∫

0

p2

E
(f1+f2)dp . (6)

The quantitymt is often referred to as the thermal photon
mass. We also define the parameter v∗:

v∗ =
ω1

ω0
(7)

interpreted as the typical velocity of the electrons in the
plasma [15]. The axial polarization coefficient is

ωA =
2α

π

∞∫

0

p2

E2

(
1−
2

3
v2
)
(f1−f2)dp . (8)

The value of ωA is a measure of the difference between
the neutrino and antineutrino spectra. The set of numer-
ical values used to display this sample result is presented
in Table 1.
The values of ω0, ωmax,mt define a sub-area of the ω–k

plane, where the dispersion relations for the photons ωt(k)
and the longitudinal plasmons ωl(k) are found:

max (k, ω0)≤ ωl(k)≤ ωmax, 0≤ k ≤ kmax , (9a)√
k2+ω20 ≤ ωt(k)≤

√
k2+m2t , 0≤ k ≤∞ .

(9b)

The dispersion relations are solutions to the
equations [15]

k2 =Πl (ωl(k), k) (10a)

k2 = ωt(k)
2−Πt (ωt(k), k) , (10b)

Table 1. Plasma properties for a typical massive star during
Si burning. All values are in MeV

kT µ ω0 ω1 mt ωmax ωA

0.32 1.33 0.074 0.070 0.086 0.133 0.002
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where the longitudinal and transverse polarization func-
tions are given as integrals:

Πl =
4α

π

∞∫

0

p2

E

(
ωl

vk
ln
ωl+ vk

ωl− vk
−1−

ω2l −k
2

ω2l − v
2k2

)

× (f1+f2)dp , (11a)

Πt =
4α

π

∞∫

0

p2

E

(
ω2t
k2
−
ω2t −k

2

k2
ωt

2vk
ln
ωt+ vk

ωt− vk

)

× (f1+f2)dp . (11b)

A typical example of the exact plasmon dispersion re-
lations is presented in Fig. 1 (see the dash-dotted curve).
As solving (10a) and (10b) with (11) is computationally in-
tensive, three levels of approximation for the dispersion
relations are widely used:

1. zero-order analytical approximations;
2. first-order relativistic corrections;
3. the Braaten–Segel approximation.

2.1.1 Approximations for longitudinal plasmons

For longitudinal plasmons, the simplest zero-order ap-
proach used in the early calculations of Adams et al. [13]
and more recently in [66] for the photoneutrino process is
to put simply

ω(k) = ω0 , (12)

where ω0 is the plasma frequency (2). The maximum plas-
mon energy is ωmax = ω0 in this approximation. The zero-
order approximation is valid only for the non-relativistic
regime and leads to large errors of the total emissivity [12].

Fig. 1. Longitudinal and transverse plasmon dispersion relation ωl,t(k) for the plasma parameters from Table 1. The exact result
(dot-dashed) is very close to the Braaten–Segel approximation (solid). Zero-order (dotted) and first-order (dashed) approxima-
tions are very poor, especially for the londitudinal mode (left)

The first relativistic correction to (12) has been intro-
duced by Beaudet et al. [12]. The dispersion relation ωl(k)
is given in an implicit form:

ω2l = ω
2
0+
3

5
ω21
k2

ω2l
, (13)

with the maximum plasmon energy equal to

ω(1)max =

√
ω20+

3

5
ω21 . (14)

This approximation, however, does not introduce a really
serious improvement (see Figs. 1, 2 (left) and 4). A break-
ing point was the publication of the Braaten–Segel approx-
imation [15]. Using the simple analytical equation

k2 = 3
ω20
v2∗

(
ωl

2v∗k
ln
ωl+ v∗k

ωl− v∗k
−1

)
, (15)

where v∗ is defined in (7), one is able to get an almost ex-
act dispersion relation; cf. Figs. 1 and 2, left panels. The
solution to (15) exists in the range 1 < k < kBSmax, where,
in this approximation, the maximum longitudinal plasmon
momentum is

(
ωBSmax

)2
=
3ω20
2v2∗

(
1

2v∗
ln
1+ v∗
1− v∗

−1

)
, (16)

which gives a value slightly different from the exact value
(Fig. 2, left), but it is required for consistency of the ap-
proximation.

2.1.2 Approximations for transverse plasmons

For photons in vacuum the dispersion relation is ωt = k.
The zero-order approximation for in-medium photons is

ω2t = ω
2
0+k

2, k� ω0 , (17a)
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Fig. 2. Longitudinal and transverse plasmon mass. Dotted lines on the right panel show the asymptotic transverse mass. Line
dashing is the same as in Fig. 1

valid for small k, and

ω2t =m
2
t +k

2, k	 ω0 , (17b)

valid for very large k. Formulae (17a) and (17b) provide
lower and upper limits for a realistic ωt(k), respectively
(cf. Fig. 1, right panel, dotted curve). First-order relativis-
tic corrections lead to the formula

ω2t = ω
2
0+k

2+
1

5
ω21
k2

ω2t
, (18)

with the asymptotic photon mass

m
(1)
t =

√
ω20+ω

2
1/5 . (19)

Finally, the Braaten–Segel approximation leads to

ω2t = k
2+ω20

3ω2t
2v2∗k

2

(
1−
ω2t − v

2
∗k
2

2ωtv∗k
ln
ωt+ v∗k

ωt− v∗k

)
. (20)

The asymptotic photon massmBSt derived from (20) is

(
mBSt
)2
=
3ω20
2v2∗

(
1−
1− v2∗
2v∗

ln
1+ v∗
1− v∗

)
. (21)

This is slightly smaller (left panel of Fig. 2, dashed curve)
than the exact value (solid line).
All four relations are presented in Fig. 1. Differences

are clearly visible, but they are much less pronounced
for transverse than for longitudinal plasmons. Inspection
of Fig. 2 reveals, however, that in the large momentum
regime the asymptotic behavior is correct only for the ex-
act integral relations (10b) and may be easily reproduced
using (17b) withmt from (6).
Let us recapitulate the main conclusions. The Braaten–

Segel approximation provides a reasonable approximation,
as the nonlinear equations (15) and (20) are easily solved
using e.g. the bisection method. The zero- and first-order
approximations (12), (17a) and (17b) with the limit values
(9) provide the starting points and ranges. The approxima-
tion has been tested by [69] and is considered as the best
one available [20]. Errors for the part of the kT–µ plane

where the plasmaneutrino process is not dominant may be
as large as 5% [69]. At present, these inaccuracies are irrel-
evant for any practical application, and the Braaten–Segel
approximation is recommended for all purposes.

2.2 Plasmon decay rate

In the standard model of the electroweak interactions,
massive in-medium photons and longitudinal plasmons
may decay into neutrino–antineutrino pairs:

γ∗→ νx+ ν̄x. (22)

In the first-order calculations two Feynman diagrams
(see Fig. 3) contribute to the decay rate [15, 65].
For the decay of the longitudinal plasmon the squared

matrix element is

M2l =
G2FC

2
V

πα

(
ω2l −k

2
)2 [2K ·Q1K ·Q2

K2

+
2k ·q1k ·q2
k2

−Q1 ·Q2

]
,

(23a)

where K = (ω,k) is the four-momentum of the plasmon.
Q1 = (E1,q1) andQ2 = (E2,q2) are the four-momentum of
the neutrino and antineutrino, respectively.
The squared matrix element for decay of the massive

photon is

M2t =
G2F
πα

[(
C2VΠ

2
t +C

2
AΠ

2
A

)(
E1E2−

k ·q1k ·q2
k2

)

+2CVCAΠtΠA
E1k ·q2−E2k ·q1

k

]
,

(23b)

where Πt is defined in (11b) and the axial polarization
functionΠA reads

ΠA =
2α

π

ω2t −k
2

k

∞∫

0

p2

E2

(
ωt

2vk
ln
ωt+ vk

ωt− vk
−
ω2t −k

2

ω2t − v
2k2

)

× (f1−f2)dp . (24)
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Fig. 3. Feynman diagrams for plasmon decay

The Fermi constant is GF/(h̄c)
3 = 1.16637(1)

10−5 GeV−2 [68] and, in the standard model of the elec-
troweak interactions, the vector and axial coupling con-
stants are

CeV =
1

2
+2 sin2 θW , C

e
A =
1

2
(25)

Cµ,τV =−
1

2
+2 sin2 θW , C

µ,τ
A =−

1

2
(26)

for electron and µ, τ neutrinos, respectively. The Weinberg
angle is sin2 θW = 0.23122(15) [68].
Terms containing CA (the so-called axial contribu-

tion) in (23b) are frequently treated separately [65] or
removed at all [3]. In calculations concentrated on the total
emissivity this is justified as antisymmetric terms multi-
plied by CVCA do not contribute at all and terms C

2
A×

. . . are suppressed relative to the term beginning with
C2V× . . . by four orders of magnitude [3]. However, if one
attempts to compute the neutrino energy spectrum all
three terms should be added, as the mixed V–A “chan-
nel” alone leads to a negative emission probability for some
neutrino energy range (Fig. 6), which is physically unac-
ceptable. These terms remain numerically small but only
for electron neutrinos. For µ and τ neutrino spectra the
axial part contributes at ∼ 1% level due to the very small
value Cµ,τV =−0.0376, while still CA =−0.5. The ‘mixed’
term leads to significant differences between the νµ,τ and
ν̄µ,τ spectra; cf. Fig. 6. Relative contributions of the three
transverse “channels” for electron and µ, τ are presented
in Table 2.
In general, all the terms in the squared matrix element

(23b) should be added. We have only two different spectra:
the longitudinal and the transverse one.
The particle production rate from plasma in thermal

equilibrium is

Ri =
gi

(2π)5

×

∫
Zifγ∗δ

4(K−Q1−Q2)M
2
i

d3k

2ωi

d3q1
2E1

d3q2
2E2

,

(27)

where i = l for the longitudinal mode and i = t for the
transverse mode. The Bose–Einstein distribution for plas-
mons fγ∗ is

fγ∗ =
1

eωt,l/kT −1
, (28)

Table 2. Relative weight of theM2t , see (23b), terms for e and
µ, τ neutrinos

Flavor Vector Axial Mixed
C2V ω

4
0

(CV ω20+CAωA)
2

C2Aω
2
A

(CV ω20+CAωA)
2

2CV CAω
2
0ωA

(CV ω20+CAωA)
2

electron 0.74 0.02 0.24
mu/tau 0.07 0.39 0.54

and the residue factors Zt,l are expressed by the polariza-
tion functions Πt,l of (11b) and (11a):

Z−1t = 1−
∂Πt

∂ω2
(29)

Z−1l =−
ω2l
k2
∂Πl

ω2
. (30)

For massive photons gt = 2 and for the longitudinal plas-
mon gl = 1.
The differential rates1 were derived for the first time

in [65]. Here, we present the result in the form valid for
both types of plasmons, ready for calculations using any
available form of dispersion relation:

d2Ri
dE1dE2

=
gi

π4
ZiM

2
i fγ∗JiS , (31)

where i= l or i= t. The product S of the unit step func-
tions Θ in (31) restrict the result to the kinematically al-
lowed area:

S =Θ(4E1E2−m
2
i )Θ(E1+E2−ω0)Θ(ωmax−E1−E2) .

(32)

The four-momenta in the squared matrix element are

Q1 = (E1, 0, 0, E1) ,

Q1 = (E2, E2 sin θ, 0, E2 cos θ) ,

K = (E1+E2, E2 sin θ, 0, E1+E2 cos θ) ,

m2i =KK = (E1+E2)
2−k′2 ,

cos θ =
k′2−E21 −E

2
2

2E1E2
,

k′ = ω−1l,t (E1+E2) ,

ωi = E1+E2 ,

where ω−1i denotes the function inverse to the dispersion
relation. The Jacobian Ji arising from the Dirac delta inte-
gration in (27) is

J−1i =
E1E2
k′
∂ωi

∂k

∣∣∣∣
k=k′

. (33)

1 The double differential rate d2Ri/dE d cos θ has an identi-
cal form as (31), but now four-momenta cannot be given explic-
itly, unless a simple analytical approximation for ωi(k) is used.
Analytical approximations for the spectrum shape are derived
this way.
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The residue factors Zi are given in (30) and (29). The max-
imum energy ωmax in (32) for longitudinal plasmons must
be in agreement with the particular approximation used
for ωl(k): ω0, (14) or (16) for the zero-order equation (12),
and first-order, (13) or the Braaten–Segel equation (15),
respectively. For transverse plasmons ωmax→∞, and the
last Θ function in (32) has no effect and may be omitted.

2.3 Longitudinal neutrino spectrum

2.3.1 Analytical approximation

We begin with a general remark on the spectrum. Note
that (31) is symmetric for a longitudinal mode under the
change E1,2 → E2,1, because (23a) is symmetric with re-
spect to the exchange Q1,2→Q2,1. The resulting energy
spectrum is thus identical for neutrinos and antineutrinos.
This is not true for transverse plasmons with the axial con-
tribution included; cf. Sect. 2.4.
Using the zero-order dispersion relation for longitudinal

plasmons, (12), we are able to express the spectrum by el-
ementary functions. The longitudinal residue factor Zt is
now

Z0l = 1 , (34)

and the Jacobian Jl resulting from the integration of the
Dirac delta function is

J0l = 1 . (35)

Now, the differential rate d2R/dE d cos θ (cf. (31) and
footnote 1) becomes much simpler, and the integral over
d cos θ can be evaluated analytically. Finally, we get the
longitudinal spectrum,

dR

dE
≡ λ(E) =

GF
2CV

2ω0
7

1260π4αh̄3c9
f(E/ω0)

eω0/kT −1
, (36)

where the normalized spectrum is

f(x) =
105

32

[
4x(x−1)(8x4−16x3+2x2+6x−3)

+3(1−2x)2 ln(1−2x)2
]
. (37)

Let us note that f is undefined at x= 1/2; we use the limit

lim
x→1/2

f(x) = 105/32

instead. The function f(x) is symmetric with respect to the
point x= 1/2, where f has a maximum value (see Fig. 4,
dotted line).
In this limit, correct for a non-relativistic, non-dege-

nerate plasma, the average neutrino and antineutrino en-
ergy is 〈E〉 = ω0/2, and the maximum ν energy is ω0.
Inspection of Fig. 4 reveals little difference between the

analytical result (36) and the result obtained with first-
order relativistic corrections to the dispersion relation (13).

Fig. 4. Approximate longitudinal plasmon analytical neutrino
spectrum, see (36), (dotted), with first-order correction used
by BPS [12] (dashed), and spectrum computed using the dis-
persion relation [15] (solid). Plasma properties are according
to Table 1

2.3.2 Numerical results

The simple formula (36) significantly underestimates the
flux and the maximum neutrino energy, equal to ωmax
rather than ω0. Therefore, we have used the Braaten–
Segel approximation for the longitudinal plasmon disper-
sion relation.
To derive the spectrum we will use the form of the dif-

ferential rate (31) provided by [65]. In the Braaten–Segel
approximation we have

ZBSl =
ω2l

ω2l −k
2

2(ω2l − v
2
∗k
2)

3ω20−ω
2
l + v

2
∗k
2
,

JBSl =

∣∣∣∣ k
2

E1E2

1−βl
ωlβl

∣∣∣∣ ,
βBSl =

3ω20
2v3∗

(
3ωl
2k3
ln
ωl+ v∗k

ωl− v∗k
−

ω2l v∗

k2(ω2l − v
2
∗k
2)
−
2v∗
k2

)
.

The spectrum is computed as an integral of (31) over dE2.
An example is presented in Fig. 4. Integration of the func-
tion in Fig. 4 over the neutrino energy gives a result well in
agreement with both (30) from [15] and (54) from [65].

2.4 Transverse plasmon decay spectrum

2.4.1 Analytical approximation

The derivation of the massive in-medium photon decay
spectrum closely follows the previous subsection. Semi-
analytical formula can be derived for the dispersion rela-
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tions (17). For the dispersion relation (17b) the transverse
residue factor Zt is

Z0t = 1 , (38)

the polarization functionΠt is equal to

Π0t =m
2
t , (39)

and the Jacobian resulting from integration of the Dirac
delta function Jt is

J0t =
E1+E2
E1E2

. (40)

The approximate spectrum, neglecting differences be-
tween neutrinos and antineutrinos, is given by the follow-
ing integral:

λ(E) =
G2FC

2
V

64π4α

m7t

h̄3c9

1∫

−1

P (cos θ, E/mt)d cos θ

exp
[
(E+

m2t
2E(1−cos θ) )/kT

]
−1
,

(41)

where the rational function P (ct, x) is

P (ct, x) =
1+2(ct−1)2(2x2−1)x2

x(ct−1)2[1−2ct(ct−1)x2+2(ct−1)2)x4]
.

(42)

The result presented in Fig. 7 shows that the spectrum
(41) obtained with the dispersion relation (17b) agrees well

Fig. 5. Transverse plasmaneutrino spectrum computed
from the approximation [15] (solid) with upper and lower lim-
its, (17b) and (17a), for the dispersion relation (dotted). The
first-order relativistic correction leads to the spectrum shown
as dashed line. Plasma parameters are as in Fig. 3

Fig. 6. Spectrum of the muon neutrinos (dotted) and antineu-
trinos (dashed) from transverse plasmon decay. Contributions
to the spectra from the so-called mixed “vector–axial chan-
nel” produces significant differences. For electron flavor, the
contribution from the “mixed channel” leads to unimportant
differences. For both flavors, the contribution from the “axial
channel” remains relatively small: 10−4 for νe and 10

−2 for
νµ. The overall contribution to the total emissivity from the
µ, τ flavors is suppressed relative to electron flavor by a factor
(Cµ,τV /C

e
V)
2 � 3.3×10−3

in both the low and high neutrino energy part with the
spectrum obtained from the Braaten–Segel approximation
for the dispersion relations. The dispersion relation (17a)
produces a much larger error, and the spectrum nowhere
agrees with the correct result. This fact is not a big sur-
prise: as was pointed out by Braaten [16] the dispersion
relation is crucial. Therefore, all previous results, includ-
ing the seminal BPS work [12], could easily be improved
just by the trivial replacement ω0→mt. Moreover, the
closely related photoneutrino process also has been com-
puted [3, 12, 14, 17] with the simplified dispersion relation
(17a) with ω0. One exception is the work of Esposito et
al. [70]. It remains unclear, however, which result is bet-
ter, as accurate dispersion relations have never been used
within a photoneutrino process context. For a plasmaneu-
trino, (17b) is a much better approximation than (17a),
especially if one puts mt from the exact formula (6). The
high energy tail of the spectrum also will be exact in this
case.
As formula (41) agrees perfectly with the tail of the

spectrum, we may use it to derive a very useful analyti-
cal expression. Leaving only leading terms of the rational
function (42),

P (ct, x)∼ x−1(1− ct)−2 ,
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one is able to compute the integral (41) analytically:

λ(E)�
G2FC

2
V

64π4α

m6t

h̄3c9

[
κ−
2

a
ln
(
eaκ/2−1

)]
, (43)

where κ= 2x+(2x)−1, x= E/mt and a=mt/kT . Interest-
ingly, the spectrum (43) is invariant under the
transformation

E ′E =m2t/4 ,

and all results obtained for the high energy tail of the
spectrum immediately may be transformed for the low en-
ergy approximation. The asymptotic behavior of (43) for
E 	 kT is of main interest:

λ(Eν) =AkTm
6
t exp

(
−
Eν
kT

)
, (44)

where for electron neutrinos

A=
G2FC

2
V

8π4α

1

h̄4c9
= 2.115×1030MeV−8cm−3s−1

and mt and kT are in MeV. For the µ, τ neutrinos just re-
place A with A(Cµ,τV /C

e
V)
2.

Formula (44) gives also quite reasonable estimates of
the total emissivity Qt and the mean neutrino energies
〈Eν〉:

Qt = AkT
3m6t (45a)

〈Eν〉= kT . (45b)

Fig. 7. Typical spectra from the plasma process. Dotted line
is a longitudinal and dashed transverse spectrum. Only the
∼ exp(−Eν/kT ) tail of the transverse spectrum (solid line) con-
tributes to a (possibly) detectable signal. Plasma properties are
according to Table 1

For comparison, we mention that Braaten–Segel [15] de-
rived the exact formulae in the high temperature limit
kT 	 ω0:

QBSt =
G2FC

2
Vζ(3)

12π4α
kT 3m6t = 0.8AkT

3m6t , (46a)

〈EBSν 〉=
6ζ(3)

π2
kT = 0.73kT . (46b)

The formulae above agree with ∼ 25% error in the leading
coefficients.

2.4.2 Numerical results

The calculation of the spectrum in the framework of
the Braaten–Segel approximation requires a residue factor,
the polarization function [15] (transverse and axial) and
the Jacobian [65]:

ZBSt =
2ω2t
(
ω2t − v

2
∗k
2
)

3ω20ω
2
t +(ω

2
t +k

2) (ω2t − v
2
∗k
2)−2ω2t (ω

2
t −k

2)
,

(47)

ΠBSt =
3ω20
2v2∗

(
ω2t
k2
−
ω2t − v

2
∗k
2

k2
ωt

2v∗k
ln
ωt+ v∗k

ωt− v∗k

)
, (48)

ΠBSA = ωAk
ω2t −k

2

ω2t − v
2
∗k
2

3ω20−2(ω
2
t −k

2)

ω20
, (49)

JBSt =
E1+E2
E1E2

∣∣∣∣∣∣
1−βBSt

1−
ω2t
k2
βBSt

∣∣∣∣∣∣ , (50)

βBSt =
9ω20
4v2∗k

2

[
1+
1

6

(
v∗k

ωt
−
3ωt
v∗k

)
ln
ωt+ v∗k

ωt− v∗k

]
. (51)

As an example, a spectrum computed as an integral of
(31) over dE2 is shown in Fig. 5.

3 Summary

The main new results presented in the article are ana-
lytical formulae for the neutrino spectra (36) and (41)
and the exact analytical formula (44) for the high en-
ergy tail of the transverse spectrum. The latter is of main
interest from the point of view of detection of astrophys-
ical sources; recently available detection techniques are
unable to detect keV plasmaneutrinos emitted with typ-
ical energies 〈Eν〉 ∼ ω0/2 (Figs. 4 and 6), where ω0 is the
plasma frequency (2). The tail behavior of the trans-
verse spectrum quickly “decouples” from the ω0 dom-
inated maximum area and becomes dominated by the
temperature-dependent term exp (−Eν/kT ). Calculation
of the events in the detector is then straightforward, as
the detector threshold in the realistic experiment will be
above maximum area. This approach is much more reli-
able than the typical practice, where an average neutrino
energy is used as a parameter in an arbitrary analytical
formula.
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Analytical formulae for the spectrum are shown to be
a poor approximation of the realistic situation, especially
for longitudinal plasmons (see Fig. 4). This is in the agree-
ment with general remarks on the dispersion relations pre-
sented by Braaten [16]. On the contrary, the Braaten and
Segel [15] approximation is shown to be a very good ap-
proach not only for the total emissivities, but also for the
spectrum. An exception is the tail of the massive photon
decay neutrino spectrum: the Braaten and Segel [15] for-
mulae lead one to underestimate the thermal photon mass,
while (44) gives an exact result. The numerical difference
between mt from (6) and (21) is however small [15]. Cal-
culating of the emissivities by the spectrum integration
seems a much longer route compared to typical methods,
but we are given much more insight into details of the pro-
cess. For example, we obtain exact formulae for the tail
for free this way. An interesting surprise revealed in the
course of our calculations is the importance of the high-
momentum behavior of the massive photon. While math-
ematically identical to the simplest approach used in the
early calculations, (17b) gives a much better approxima-
tion for the total emissivity than (17a).
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66. S.I. Dutta, S. Ratković, M. Prakash, Phys. Rev. D 69,
023005 (2004)

67. M. Misiaszek, A. Odrzywoltek, M. Kutschera, Phys. Rev.
D 74, 043006 (2006)

68. W.M. Yao, C. Amsler, D. Asner, R. Barnett, J. Beringer,
P. Burchat, C. Carone, C. Caso, O. Dahl, G. D’Ambrosio
et al., J. Phys. G 33, 1 (2006) http://pdg.lbl.gov

69. N. Itoh, A. Nishikawa, Y. Kohyama, Astrophys. J. 470,
1015 (1996)

70. S. Esposito, G. Mangano, G. Miele, I. Picardi, O. Pisanti,
Nucl. Phys. B 658, 217 (2003)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


